
Volume � �� � �� ����	 pp
 � � ��

Some Basic Facts for E�cient Massively Parallel

Computation

Owe Axelsson and M�G� Neytcheva�

Department of Mathematics� University of Nijmegen

Toernooiveld� ���� ED Nijmegen

The Netherlands

Four fundamental aspects of e
cient massively parallel computation are dis�
cussed�
�i� the need for massively parallel computations and	 consequently	 the need for
distributed memory machines
�ii� the need for scalable algorithms
�iii� some physical limits to massively parallel computations
�iv� the need for dynamic load balancing algorithms

Massively parallel computation in large scale numerical modelling requires scal�
able algorithms	 i
e
	 the performance of algorithms must increase �asymptot�
ically� linearly with the number of processors �p�
 This requires on one hand
algorithms with a communication complexity which increases at most linearly
with p �and	 ideally	 decreases in a relative sense to zero� and on the other hand	
an algorithm with a �close to� optimal computational complexity when run on
a single processor
 An example of such an algorithm will be presented
 The
consequence of the fast growth of the computational complexity with problem
size will be illustrated on a �D partial di�erential equation
 Finally	 it will be
shown that due to physical limits	 in reality there does not exist any asymptotic
�p��� state

Hence computing times must eventually increase with problemsize	 no matter
how many processors are used
 The remedy to this situation in scienti�c com�
puting is to limit the problem size by use of adaptive re�nement methods
 Some
aspects of dynamic load balancing for adaptive re�nement methods will be men�
tioned


� Supported in part by NCF�Cray Research under grant no CRG ������

�



�� Introduction

The computational complexity of the solution of a problem can grow very fast
with increasing problem size� To illustrate this� consider a time dependent PDE
in �D� Assuming that one uses a uniform partitioning in time and space� the
number of �unknown� parameters to be computed increases as � cn�� n���
for some constant c� where both the timestep and the meshwidth � O�n����
Assume� for simplicity� that for a given stepsize h� � n��� the computer time
is � second and assume now that we must resolve some boundary or interior
layers of the solution and for this purpose we divide the meshsizes with a factor
�	 in each time
space direction then the complexity becomes � c�	�n��
In the most ideal case the solver requires only the same amount of arithmetic
computer operations� Then we need at least a factor of �	� more processors for
the same computer time as for the unre�ned mesh problem� To cope with the
fast growth of the computational complexity one must use local mesh re�ne

ments� preferably in the �D time
space domain� In certain CFD computations
one may need to re�ne the mesh �locally� with perhaps a factor ���		 or more�
The computing time would then grow with a factor �	� if one uses a uniform
re�nement� which is clearly out of reach ��	� seconds � � years
�� Use of an
adaptive mesh and local re�nement can reduce the average meshsize to h���	�
perhaps� but then we still must account for a factor �	�� Therefore� massively
parallel computation is required with a number of processors p � �	�� say�

Due to physical constraints� massively parallel computers can not be built
with a shared memory� but only with distributed local memories� Hence� one
must use algorithms for which the performance increases linearly with the num

ber of processors� Some reasons why massively parallel scienti�c computation
hasn�t been a great success yet� are identi�ed and a solution is suggested� The
present paper is a short version of ����

�� Megaflop rates contra computing times� or nearest neighbor

contra global communication

The above� already indicated as a serious problem� is in fact even worse because
we have neglected the issue of communication complexity� On a massively par

allel distributed memory machine one can not avoid communication overhead�
in any reasonable algorithm the computer processors need to exchange data�
With an increasing number of processors the time spend an data communica

tion tends to increase relative to the time for computation�

One must therefore use solution algorithms where the communication over

head is not dominating� The most desirable situation from the latter view
point
is that only nearest neighbor communication would arise� because communi

cation between processors far apart must take place in general using message

passing via intermediate processors� which latter can increase the communica

tion overhead signi�cantly�

Indeed� there exist �elementary� algorithms which only need nearest neigh

bor communication� For instance� to solve a �large scale sparse� linear system

�	



Ax � b one can use iteration methods in the basic form�
Given x�� for k � 	� �� � � � until convergence compute� xk�� � xk � ��Axk � b��
Here � is a damping parameter chosen to get convergence of the iterations
�possibly � � �k is variable�� The classical conjugate gradient method has a
similar form�

In such cases the above iterations can be executed extremely fast on parallel
computers because the need for exchange of data is relatively small and occurs
only via nearest
neighbor processors �assuming one has used a proper mapping
of mesh points onto processors�� Therefore� when implementing the above
methods on parallel computer architectures one normally gets a close to peak
performance measured in mega�oprates� Such methods are sometimes referred
to as �embarrassingly parallelizable��

However� what obviously matters for a user is not the mega�op rate but
the computer time� The above basic iteration method requires �for elliptic
second order pde problems� O�n�� iterations �or possibly O�n�� if the method
parameters �k can be chosen properly�� Hence the computer time grows as
O�n�N� or� at least as O�nN�� n � �� where N is the total number of
meshpoints�

Nowadays there exist very e�cient algorithms to solve large scale elliptic
type pde� and other similar types of problems� on a single processor� They
are generally based on some substructuring of the original problem which can
be a multigrid or �algebraic� multilevel iteration method� or some variants of
DD methods and� under quite general conditions� they require only a bounded�
O��� or O�logn� number of iterations for convergence� However� as the name
multilevel of the methods indicates� they are based on a sequence of �nested or
nonnested� meshes or subgraphs �subgraphs of the matrix graph belonging to
the given sparse matrix�� Therefore� as one progresses down in the method to
coarser and coarser meshes� the communication must take place to increasingly
more distanced processors and the method involves therefore a rapidly increas

ing and� in fact� dominating amount of data communication overhead� Hence�
such methods must be implemented with special care to enable an e�cient
use of the parallel machine� This is illustrated in Tables � and �� where �rst
a comparison is made of an �embarrassingly parallelizable� method run on a
massively parallel computer and an optimal method run on a single processor�

Example ����

Consider the equation a
�
��u
�x�

� ��u
�y�

�
� f in the square 	 � x� y � � where

a � a� in the square � �
� � x� y � �

� and a � � elsewhere� and where u � 	 on
the boundary of the �rst square� Then on a ���� ��� grid the computer times
as shown in Table � were found�

��



Computer Algorithm Computer time�sec� Clock cycle
CM
�		 Diagonally pre

� K bit � ��� conditioned CG ��� �	 MHz
�� bit processors

IBM RS��			 Multilevel �� MHz��

�p � �� V 
cycle ���

Table �� Computer times on a p � ��� parallel machine and on a single processor

machine��� Peak performance � �� M�ops�

Clearly� it is pointless to employ numerically ine�cient algorithms merely to
exhibit arti�cially high performance rates on a particular parallel machine using
algorithms which are ine�cient on a serial computer� �cf �����

It can be seen that any algorithm with an optimal order of computational
complexity O�N� requires some form of global communication such as occurs
in the multilevel iteration methods� In Table � we consider now the use of the
multilevel iteration method on a massively parallel computer�

Coe�� No Preconditioning Diag� Preconditioning AMLI Preconditioning
jump Grid Iter� CPU time Iter� CPU time Iter� CPU time

	n
��� 	��� 
�
 ���� 
�
 ���� �	 ����

	n
�	 	��� � � 
�� ���	 �� ��
	

	��� ���� �	��� �
� ��
� �� ���

	n
�

	 ���� � � 	
�� 	
�
� �	 	����

�	�� � � �
�
 �	�	� 

 ���	


Table �� Number of iterations and computer times on CM��

 for two �embarrass�

ingly parallelizable� algorithms and for a multilevel iteration method for Example

��	�

The large computer time for the �close to� optimal order algorithm is due to
the dominating communication time� Therefore� the dilemma�

	 fast convergence �
 much communication overhead
	 little communication overhead �
 slow convergence
may seem impossible to overcome�

However� as shall be seen in the next section� it is curable and using a proper
algorithm one can achieve scalability� Here we use scalable in the following
sense�

Definition ����

�a� An algorithm A is said to have an optimal order parallel complexity or
shortly to be scalable� if its e�ciency E�A� p� � T �A�� ���pT �A� p� �A� denotes
the optimal algorithm on a single processor� approaches its optimal value of

one for increasing N and for p increasing not faster than p � p��N� as some

��



properly increasing function of N �
�b� The algorithm A is said to be scalable on a particular parallel architecture
if it has an optimal order of parallel complexity�

For further discussions on scalability issues � see ���� � ����� and the ref

erences quoted therein� As it turns out one can not expect to see the e�ect
of scalability if one considers an increasing number of processors but a �xed
problem size� In fact� frequently it makes sense to consider the situation where
p increases slower than N �

�� A scalable implementation of a multilevel iteration method�

with some numerical testresults

Fortunately� there exists a cure for the �rate of convergence �� dominating
communication overhead� con�ict� It is based on the following simple idea�
Use as few levels as possible and solve the �nal coarse mesh problem with an
�embarrassingly parallelizable� method� The number of levels used should be
a balance between the computational complexities on the �nest level and the
complexity �per V 
cycle iteration� on the coarsest level� in order to minimize
the total computer time�

The algebraic multilevel iteration method

The AMLI methods belong to the class of multilevel solution methods and
�ts into the general framework of block
incomplete factorization methods for
constructing a preconditioner to a given matrix� Two main forms of such a
preconditioner are the block� diagonal or additive form and full block factorized

or multiplicative form� The hierarchical basis function preconditioner is an
example of the �rst type and the AMLI methods by ���� ���� ��� and others are
example of the second type� To give a �avour of the construction of the AMLI
type preconditioner� we give here a brief sketch of the method� when applied
to linear selfadjoint second order elliptic partial di�erential equations�

Let Ax � b be an algebraic system derived by di�erences or �nite elements
from the di�erential equation� We want to �nd a preconditioner for A to
be used in a conjugate gradient method� AMLI is a recursive procedure for
constructing a preconditioner M for A� It replaces the solution of a system
with the preconditioning matrix by a sequence of subproblems to be solved on
some hierarchy of levels� The levels are based on a certain decomposition of
the matrix graph ���N�S� of A � �aij �

n
i�j	� where N is the corresponding set

of nodes �vertices� and S is the set of edges �i� j�� such that �i� j� � S if and
only if aij 
� 	� In particular� going upwards the levels may be related to levels
of consecutive grid re�nements of the discretized problem� A matrix A
k� is
associated with each level k�The preconditioner is implicitly de�ned� An action
of its inverse on a vector requires only matrix vector operations and acts on the
di�erent levels depending on some matrix polynomial� The so
called V 
cycle
corresponds to a polynomial of degree one�

A short version of the AMLI method� which is described in detail in ��	�
turns out to be an improvement of the classical method and is specially suit


��



able for parallel implementations� Some numerical tests using this method are
reported in Table �� Being a V 
cycle algorithm� the above method is not of op

timal order of computational complexity� since the number of iterations grows�
albeit slowly� with increasing problem size� However� this growth can be cured
to any order arbitrarily close to the optimal order using one of the methods as
described in ����

The short level version of the AMLI method has been applied in various
more general contexts such as for nonsymmetric� inde�nite� and eigenvalue
problems� see ��	�� It has been implemented and tested already on various
supercomputers or massively parallel computers� such as the CM
�� CM
�		�
CM
�� Cray C��� and Cray T�D� For the latter machine the results in Table �
were found�

No� of unknowns Coarse No� of Average Total execution time
Total no� level outer no� of on no� of PEs �in sec�
of levels no� iter� inner iter� 	� �� �
 	�� ���

� �
 � � � � � ��
��
��

� ����� � �� 	� � � � � �

	� levels �� �� 	� 
 � 	 � �
		 �� �� � � � �

� �� � �
 � � � ��
��
��

� ���	

 �� 
� 	
 
� �� 	� � �

	� levels 		 � � ��
 � � � �

	� �
 	� � � � �� ��
��
��

� �
��	�� �� �
 	� � � � �� ��

	� levels 	
 �
 �
 � � � �	 �

Table �� Number of inner and outer iterations and computer execution times for

a �D code of the short AMLI method� using a trilinear ����point� sti�ness matrix�

preconditioned by �nite di�erence ���point� matrix� ratio between degrees of freedom

on consecutive levels Nk���Nk � ��

It is seen that the method scales very nicely� There are several advantages in
using a short level version of the AMLI and similar multilevel iteration methods
as compared to a full length version�

	 the recursive loop and communication overhead is small�
	 the condition number is smaller� in particular for the V 
cycle version �the
work per V 
cycle may be somewhat larger� but this can be controlled as has
been shown in ��� and ����

	 the performance of the method is generally more robust with respect to
various problem parameters�

The stabilization property of the short AMLI method is shown in ��� and it
turns out that the corresponding minimal computational cost �per node point�
is

��



Wl

nl
� const�

�
� �

l

d�� log� � � O
�
N

�
��d���

log� �
�
� d � � or ��

when a short level version with coarsest level k� � d
d�� l � jO���j� l � ��

is used� Here � is the factor in the condition numbers of the preconditioner
matrix relating two adjacent levels and N � nl�
If a full length V 
cycle method had been used the result would have been
Wl�nl � O�N

�
� log� ��� The stabilizing factor of the short level AMLI method is

hence �
d�� and takes the values �

� and �
� � for �D and �D problems� respectively�

The corresponding asymtotic values of k�
l
are �

� and �
� � respectively� Hence we

see that in practice� for the optimal value of the coarse mesh level� the coarse
mesh is very close to the �ne mesh� The runs presented in Table � nicely
illustrate the above result� They show also the close to optimal scalability of the
method when implemented on a parallel machine with up to ��� processors� So
far� only the computational complexity of the AMLI method has been analysed�
What remains is to analyse the communication complexity� which as we have
seen� depends on the number of processors used� and to �nd a proper balance
of the problem size and number of processors�

On a �D mesh array computer� one �nds the computer time per iteration
step

Tp �
T�
p

� w�itin �
p
p� w�itin

�

s
Nk�

p
� w�

�
p
p� w�

�

s
N

p
�

where wi� i � �� �� �� � are constants which depend on the communication
rate� Here itin is the average number of inner iterations on the coarsest mesh
performed per outer iteration� and the additional terms arise from nearest
neighbor and global communications� We assume that p � Nk� and that itin �

O�N
�
d

k�
�� The latter holds for the conjugate gradient method� for instance� We

let Nk� be determined for smallest computational cost and let p be chosen to
minimize Tp� We �nd then asymptotically

p� �
�� �

w�

�

T�

N
�
d

k�

�A
�
�

� O�N
	
�
 �� N ��

and Tp� � O�N
�
�
 �� As we have seen previously� the number of iterations grow

like O
�
N

�
�

�
d�� log� �

�
� so the total computer time is bTp � O

�
N

�
�
�

�
� log� �

�
�

Typically� � � �� in which case the total computer time grows as bTp � O�N
	
�
 ��

�� Physical limits on parallelism

For a long time the increase of the performance of computers was done by
increasing clock speed� However� due to physical constraints such as speed of
light and wave re�ections one has now come close to the ultimate bound when
metal interconnections are used� Also� any packing of processor elements in

��



real physical �i�e� � or �� space means that there is a growth of the total vol

ume occupied by wires and eventually processors become to wires as needles
in a haystack� This translates into a corresponding barrier for the clock cycle�
For more details see ���� and ���� and the references quoted therein�
Optical interconnections might be a solution in the future machines both for
interchip and interboard connections� see ��� for a discussion� However� even
they will have limits due to fundamental physical laws� Therefore� the con

struction of computer systems with an �in�nitely� large number of processor is
impossible�

�� On dynamic load balancing for adaptive refinement methods

When solving unstructured mesh problems a proper mapping of node
points
to processors becomes an essential part of an e�cient algorithm for parallel
processors� When adaptive re�nement methods are used this mapping must be
applied dynamically during the solution process� i�e�� one must use remappings�

The mapping should distribute the computational load fairly evenly among
the processors and in such a way that similar communication patterns� or data
localities� are seen from all processors� cf� �����

Ultimately� the task of a load balancing algorithm is to �nd a mapping q �
N � P � whereN �P are the set of nodpoints and set of processors� respectively�
in such a way that the computing time is minimized� This is a very complex
problem which involves many parameters �hardware� software� method� and
one must settle for a less ambitious task� such as �nding in some heuristic way
a mapping which nearly achieves this goal�

One must in general use some discrete optimization method� General al

gorithms� such as simulated annealing ���� or genetic algorithms ��� exist� but
require normally more time than the solver itself and seem therefore to be out
of question to use in the present context�

Much e�ort has recently been devoted to algorithms for use on a single un�

structured grid� The goal has here been to partition the vertices of the matrix
graph �or� equivalently� of the mesh� into p equal subsets� while minimizing the
numbers of inter
subset edges �which latter determines the amount of interpro

cessor communication required��

A popular method has been to use a divide and conquer approach which
reduces the graph mapping problem to a graph bisection problem� which is
applied recursively to obtain �s partitionings after s steps�

The bisection strategies range from methods based on geometric informa

tion of the grid ��� to methods using the eigenvector corresponding to the
second smallest eigenvalue of the Boolean or Laplacian matrix derived from
the connectivities of the graph �����

However� in the context of multilevel and hierarchically determined meshes
these methods may be less e�cient for the following reasons�

�i� The recursions between the matrices on di�erent levels when a multiplica

tive version of multilevel method is used require some further inter
grid

��



dependencies� which are not considered in the bisection strategies�

�ii� The computational complexity of the multilevel methods is normally rela

tively small per node
point so the overhead caused by the mesh
partitioning
method can easily dominate the total computing times�

�iii� In the context of dynamic load balancing the mapping method does not
take the current mapping into account in order to restrict the number of
elements that must be moved from one processor to another�

Therefore� it seems that an e�cient dynamic load balancing algorithm must be
closer connected to the evolution of the solution algorithm itself and not used
separately from this�

References

�� O� Axelsson ������� The stabilized V
cycle method� TICAM Conference

Proceedings� editor J�T� Oden� Wiley� to appear�
�� O� Axelsson� V� Eijkhout ������� The nested recursive two
level factor


ization method for nine
point di�erence matrices� SIAM J� Scienti�c and

Statistical Computations� ��� ���� ��		�
�� O� Axelsson� M� Neytcheva ������� Some basic facts for e�cient mas


sively parallel computation� Report ��	�� University of Nijmegen�
�� O� Axelsson� M� Neytcheva ������� Algebraic multilevel iteration

method for Stieltjes matrices� Numer� Linear Algebra with Applications�
�� ��� ����

�� O� Axelsson� P�S� Vassilevski ����	�� Algebraic multilevel precondi

tioning methods II� SIAM J� Numer� Anal�� ��� ���� ���	�

�� D�H� Bailey ������� Misleading Performance Reporting in the Supercom

puting Field� Scienti�c Progr� �� ��� ����

�� A� Louri� H� Sung ������� �D Optimal Interconnectors for High
Speed
Interchip and Interboard Communications� Computer� �� ���

�� Gary L� Miller� Stephen A� Vavasis ������� A uni�ed geometric ap

proach to graph separators� In ��th Annual Symposiium on Foundations of

Computer Science� pp� ��� ���� Puerto Rico� IEEE�
�� H� M	uhlenbein� M� Gorges
Schleuter� O� Kr	amer ������� New So


lutions to the Mapping Problem of Parallel Systems� The Evolution Ap

proach� Parallel Computing� �� ��� ����

�	� M� Neytcheva ������� Arithmetic and communication complexity of pre�

conditioning methods� Ph�D� Thesis� University of Nijmegen�
��� A� Pothen� H� Simon� K� Liou ����	�� Partitioning Sparse Matrices with

Eigenvectors of Graphs� SIAM J� Matrix Anal� Appl�� ��� ��	 ����
��� R�D� Williams� Performance of dynamic load balancing algorithms for

unstructured mesh calculations� Report C�P���� Caltec� Pasadena� CA�
��� P�H� Worley ������� Limits on Parallelism in the Numerical Solution

of Linear Partial Di�erential Equations� SIAM J� Sci� Stat� Comput�� ���
� ���

��


